Exercise 18

A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at a speed of $1.6 \mathrm{~m} / \mathrm{s}$, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?

Solution

Draw a schematic of the spotlight, the man, and the building. Let x be his distance from the spotlight, and let y be the height of the shadow on the building wall. The derivative of a distance with respect to time is a speed.

Use trigonometry to relate x and y.

$$
\tan \theta=\frac{2}{x}=\frac{y}{12}
$$

Solve for y.

$$
y=\frac{24}{x}
$$

Differentiate both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d}{d t}\left(\frac{24}{x}\right) \\
& =\left(-\frac{24}{x^{2}}\right) \cdot \frac{d x}{d t}
\end{aligned}
$$

When the man is 4 m from the building, he is 8 m from the spotlight.

$$
\left.\frac{d y}{d t}\right|_{x=8}=\left(-\frac{24}{8^{2}}\right) \cdot(1.6)=-0.6 .
$$

Therefore, when the man is 4 m from the building, the shadow is decreasing by 0.6 meters per second.

